
UNCLASSIFIED
% SECU 'v CLASSIFCA1A1O, Of THIS PAGE (Wher.Dota FnCereod d I ,

RtEPORT DOCUN:NTATION PAGE SA IMU NS

1. RIEPORTl OLIBR 12. GOVY ACCESSION NO. 3. RECIPIENI'S CATILOG NUMBER

4. TTLE (Snd $ubfe) 5. TYPE OF REPORT A PERIOD COVERED

Ada Compiler Validation Summary Report: Digital 27 Jan 1989 - 1 Dec 1990

o Equipment Corporation, VAX Ada Version 2.0, VAX 8800 (host
M to VAX 8800 (target), 890127SI.10033

I. PLRFDRNGbG. REPORt NUMBER

00 '. AUIHOR(s) I. C0€"ACT O &RAN NUME.R(S)

National Institute of Standards and Technology
00 Gaithersburg, Maryland, USA

O 1. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASt

N National Institute of Standards and Technology AREA & WORK UNT NUMERS

t Gaithersburg, Maryland, USA

I OhIROLING OFFICE NAME AND A7DRESS 12. REPORT DATE
Aaa Joint Program Office
United States Departwent of Defense N U PA6.5Washington, DC 2D301-3081 i.u Lu ,

4. MONITORING AGENCY NAME & ADDRESS(Ifdifferent frorn C ntrolling Offce) I5. SECURITY CLASS (ofth, report)
UNC LA SSIFIE D

National Institute of Standards and Technology NLS. C SIFICATEONDO%:,RAD1

Gaithersburg, Maryland, USA U. N/A

It. DISIRIBUTI0 STATEMENT (ofthisReporn)

Approved for public release; distribution unlimited.

17. DISTR1BJ1ION S1A'T .%7E T (of the ab,.c1 enteredin Block 20 If d, Herent from Report)

UNCLASSIFIED % o 19'

I8. SUPF .EMjNAL NOTLS

149. KEYW?^ R:S (Continue oo) evesej sac nfecemi,) r,didentf) by block number)

Ada Progra-.ing language, Ada Compiler Validation Surrnary Report, Ada
Cor.piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRAC T (Continue on revere sie if necessary end ,dent,1) by block number)

VAX Ada Version 2.0, Digital Equipment Corporation, National Institute of Standards

and Technology, VAX 8800 under VMS, Version 5.0 (host and target), ACVC 1.10

[89 5 30 004
DD tu m 1473 EDITION Or 1 lov 6 IS OBSOLETE

I J 73 S/N 0102-LF-OI-SOI UNCLASSIFEED
S[CU;II CLASSIFICATION OF IMIS PA E (hrn D.D .!re?,'d

AVF Control Number: NIST89DEC510 1 1.10

Ada Compiler Validation Summary Report:

Compiler Name: VAX Ada Version 2.0

Certificate Number: 890127S1.10033

Host: VAX 8800 VMS, Version 5.0

Target: VA LX 8800 under V:.!S, Version 5.0

Testing Completed 01-27-89 Using ACVC 1.10

This report has been reviewed and is approved.

Dr. David K. Jefroso

Chief, Information Systems
Engineering Division
National Computer Systems Laboratory (NCSL)
National Institut:e of Szandards and T,:chno,- y
Building 225, Room A266
Gaithersburg, ND 20899 Acces:on For

NTIS (TA&IDTIC T,.3

7' Unanji -,,:'Cited
/ ~r " Just ii' 'cat £0

Ae'a Validation Organiza-ion
Dr. John F. Kramer By
Institute for Defense Analyses Distribution/
Alexandria VA 22311 AvailabilitY Codes

jAva iiic /or
DiSt Special

Ada Joint Program Office -
Dr. John Solomond
Director
Washington D.C. 20301

AVF Control Number: NIST89DEC51O__1.10

DRAFT PREPARED AFTER ON-SITE: 01-27-89

FINAL PREPARED: 04-27-89

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890127S1.10033

Digital Equipment Corporation

VAX Ada Version 2.0

VAX 8800 Host and VAX 8800 Target

Completion of On-Site Testing:

01-27-89

Prepared By:

Software Standards Validation Group

National Computer Systems

Laboratory

National Institute of Standards

and Technology

Building 225, Room A266

Oaithersburg, Maryland 20899

Prepared For:

Ada Joint Program Office

United States Department of Defense

Vashington DC 20301-3081

iE

AVF Control Number: N:ST89DEC5101_1.10

Ada Compiler Validation Summary Report:

Compiler Name: VAX Ada Version 2.0

Certificate Number: 890127S1.10033

Host: VAX 8800 VMS, Version 5.0

Target: VAX 8800 under VMS, Version 5.0

Testing Completed 01-27-89 Using ACVC 1.10

This report has been reviewed and is approved.

A a Validation Fa 'liir
Dr. David K. Jefz sor

Chief, Information Systems
Engineering Div-ision
National Computer Systems Labora:ory (,,CSL)
Nationai 7ns i:uze of S.andards and 7,!chno1.q--
Building 225, Room A266
Gaithersburg, :.:D 20899

Ada Valida:-ion -rzaniza:7111

Dr. John F. Kramer
Institute f~or Defense Analy-

Alexandria VA 22311 7

Ada Joint Program Office
Dr. John Solomond
Director
Washington D.C. 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2

1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SULIARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-6
3.7 ADDITIONAL TESTING INFORMATION3-7
3.7.1 Prevalidation3-7
3.7.2 Test Method 3-7
3.7.3 Test Site 3-8

APPENDIX A CONFOPMAINCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TEST:

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY
Digital Equipment Corporation

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.

This report explains all technical terms used within it and thoroughly

reports the results of te-sting this compiler using the Ada Compiler
Validation Capability. (ACVC). An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features

must conform to the requirements of the Ada Standard. The Ada Standard

must be implemented in its entirety, and nothing can be implemented that

is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between

implementations. The Ada Standard permits some implementation

dependencies--for example, the maximum length of identifiers or the

maximum values of integer types. Other differences between compilers

result from the characteristics of particular operating systems,

hardware, or implementation strategies. All the dependencies observed

during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced

during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and

evaluating the results. The purpose of validating is to ensure

conformity of The compiler to the Ada Standard by testing that the

compiler prop;rly implements legal language constructs and that it

identifies and rejects illegal language constructs. The testing also

identifies behavior that is implementation dependent, but is permitted

by the Ada Standard. Six classes of tests are used. These tests are

designed to perform checks at compile time, at link time, and during

execution.

i-I

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of rhe validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

On-site testing was completed 01-27-89 at Nashua, New Hampshire.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
GUSD RE
The Pentagon, Pm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

National Computer Systems Laboratory
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

1-2

Ada Validation Organization
Institute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

4. Ada .Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada

programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to

the Commentary point addressed by a comment on the Ada

Standard. These comments are given a unique

identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and

Guidelines.

AVO The Ada Validation Organization. The AVO has oversight

authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of

1-3

this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
:\da Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both ial and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the

1-4

program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the

compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected b. the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving

multiple, set tratelv- compiled units are detected and not allowed to
execLte. Class L tests are compiled separately and execution is

attempted. A Class L test passes if it is rejected at link time--that
is, an attemtp:t Aeecuze the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately aetect errors during compilaticn of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides tie mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECKFILE is used to check the contents of text files written by some

1-5

of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct 's 'Pl::.;cram from the ACVC and, therefore, is not used in
testing a comtpiler. The tests withdrawn at the time of this validation
are given in Appendix D.

1-6

CHAPTER 2

CO;FCUFRAT:ON INFOPMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: VA.K Ada Version 2.0

ACVC .'eision: 1.10

Cer:ificli.:be-: q90127S!.I0033

Host CoI r ,,v e :

S: V.- 8800

Cperazing System: VMIS, Version 5.0

temo-v Size: 68 MBytes

Targe go e -0 Z c

.ersion 5.0

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize ani.eenaion. The tests demonstrate the following
characteristics-

a. Capacities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests) .)

(3) The compiler correctly processes tests containing block
s:tJa ::.nts nrstEd to 15 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This iinpleientation supports the additional predefined
types SHORT INTEGER, SHORT SHORT INTEGER, LONG FLOAT, and
LO:G LONGFLOAT in the package STANDARD. (See tests

:T.. .7f- (7 tests) .

c. E,<'x -e S S -. v i a ion"

.he orer n which ep-:ressions are evaluated and the time at
which constraints are check-ed are not defined by the language.

-iete -.C'C tests do not specifically attempt to determine

the order of evaluation of expressions, test results indicate

the following:

(1) All of the default initialization expressions for record
components are evaluated before any value is checked for

membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same

precision as the base type. (See test C35712B.)

2-2

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NU-IERIC_ERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z (26
tests) .)

d. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AOi4A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTR INT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER' LAST and/or SYSTEM.MAXINT. For this
implementation:
(1) Declaration of an array type or subtype declaration with

more than SYSTEMlAXINT components raises NUMERICERROR.
(See test C36003A.)

(2) ;U-MERIC_ERROR is raised when an array type with
INTEGER'LAST + 2 components is declared. (See test
C36202A.)

(3) NUMERIC _ERROR is raised when an array type with
SYSTEM.MAX INT + 2 components is declared. (See test
C36202B.)

2-3

(4) A packed BOOLEAN array having a 'LENGTH exceeding

INTEGER'LAST raises NUMERIC ERROR when the array type is

declared. (See test C52103X.)

5) A racked two-dimensional BOOLEAN array with more than

lEER'-ST components raises NUMERICERROR when the array
subt:pe is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than

INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR

either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,

lengths must match in array slice assignments. This
implementation raises NUMERIC ERROR when the array type is

declared. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

(E)rin ::! :ilg t'.:o-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before

COSTRAIN:TERROR is raised when checking whether the
exnression's subtype is compatible with the target's

sub type. (See test C52013A.)

I) in the evaluation of a multi-dimensional aggregate, the

test results indicate that all choices are evaluated before

checking against the index type. (See tests C43207A and

C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,

all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate

does not belong to an index subtype. (See test E43211B.)

2-4

h. Pragmas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A. .B (2 tests), EA3004C. .D (2 tests), and
CA3O00E..F (2 tests).)

i. Generics.
(1) Generic specifications and bodies can be compiled in

separate compilations. (See tests CAI012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OllA.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in -eparate compilations. (See test CAlOl2A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BCZ05D.)

(8) Generic non-library package bodies as subunits can be
compiled in separate compilations. (See test CA2009C.)

(9) Generuc bodies and t,.eir subunits can be compiled in
se:'-'e oap.::ions. (See test CA30llA.)

j. Input and output.

(1) The package SEQUENTIAL_ O can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE220IE.)

(2) The package DIRECT_ 10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE21OIH,
E724OID, and EE240IG.)

2-5

(3) Mode IN FILE is supported for the operation of CREATE for
SEQUENTIAL_10. (See test CE2102D.)

(4) Mode INFILE is supported for the operation of CREATE for
DIRECTIO. (See test CE21021.)

(5) Mode IN FILE is supported for the operation of CREATE for

text files. (See test CE3102E.)

(6) DELETE operations are supported for SEQUENTIALIO. (See

test CE2102X.)

(7) RESET operations of OUT FILE to INFILE are supported but

RESET operations of IN FILE to OUT FILE are not supported
for SEQUENTIALIO. (See test CE2102G.)

(8) RESET and DELETE operations are supported for DIRECT 10

with the exceptions that RESET from INFILE to _OUT FILE
and RESET from INFILE to INOUTFILE are not allowed. (See

tests CE2102K and CE2102Y.)

(9) RESET and DELETE operations are supported for text files.
(See tests CE3102F. .G (2 tests), CE3104C, CE311OA, and

CE3114A.)

(10) Overwriting to a sequential file truncates to the last

element written. (See test CE2208B.)

(11) Temporary sequential files are not given names. (See test

CE2108B.)

(12) Temporary direct files -are not given names. (See test

CE2108D.)

(13) Temporary text files are not given names. (See test

CE3112B.)

(14) "ore tn!an one internal file can be associated with each

externa file for sequential files when reading only

e tests CE21O7A..E (5 tests), CE2102L, CE211OB, and
CE211:D.)

(15) More than one internal file can be associated with each
external file for direct files when reading only (See

tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(16) More than one internal file can be associated with each
e:.ternal file for text files when reading only. (See tests

CE3!11A..E (5 tests), CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of zke AC'C comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 150 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 4 tests were
required to successfully demonstrate the test objective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 2173 17 26 46 3523

Inapplicable 0 6 143 0 2 0 151

itd -n 1 2 34 0 6 0 43

T'TAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMDIARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 209 64 661 245 172 99 162 331 137 36 252 296 275 3523

Inapplicable 3 1 19 3 0 0 4 2 0 0 0 73 46 151

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E BC3009B CD2A62D CD2A63A CD2A63B
CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D
CD2A73A CD2A732 CD2A73C CD2A7ZD CD2A76A CD2A76B
CD2A76C CD2A76D CD2A81G CD2A83G CD2A84:' CD2A84N
CD2B1SC CD211B CD5007B CDSO!O CD7105A CD7203B
CD7204B CD7205C CD7205D CE21071 CE3111C CE3301A
CE3411B E28005C ED7004B ED7005C ED7005D ED7006C
ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICALE TESTS

Some tests do - ano v to a'- compilers because they make use of
features that a compriler is not required bv the Ada Standard to support.
Others ma-.- detend on the result of another test that is either
inapplicable or .:ithdrawn. T.e applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 150
tests were inapplicable for the reasons indicated:

C241!3'...Y (3 tests) have source lines that exceed the VAX Ada
implementation limit of 255 characters.

C35702A and BS600!T (2 tests) are not applicable because this
implementation supports no predefined type SHORTFLOAT.

3-2

C45531M. .P and C45532M. .P (8 tests) are not applicable because
this implementation does not support the particular fixed point
base types required by these tests.

C45231C, C45304C, C45502C, C45503C, C45504C, C45504F, C45611C,
C45613C, C.561c, C45631C, C45632C, B52004D, C55BO7A, B55B09C,
B86001W, and CDTOIF (16 tests) are not applicable because this
implementation does not support a predefined type LONGINTEGER.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

C86001F is not applicable because, for this implementation, the
package TEXT_IO is dependent upon package SYSTEM. This test
recompiles package SYSTEM, making package TEXT_10, and hence
package REPORT, obsolete.

B91001H is not applicable because this implementation does not
support address clauses for task entries (AI-325). Typically, the
address of the code to be executed when an interrupt occurs is
stored in an interrupt vector at some particular memory location.
However, the VMS operating system uses asynchronous system trap (or
AST) for a software interrupt. The ASTs receive dynamically the
address of the code to be executed when an interrupt occurs as a
parameter to a system service routine when a service is requested.

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CDI009C, CD2A4AI, CD2A41B, CD2A41E, CD2A42A, CD2A42B, CD2A42C,
CD2A42D, CD2A42E, CD2A42F, CD2A42G, CD2A42H, CD2A421, and CD2A42J
(14 tests) are not applicable because this implementation does not
support shortened mantissa and/or exponent lengths for floating
point types.

CDlCO4C, CD2A53C, and CD2A54G (3 tests) are not applicable because
a represena:t:ion clause specifying SMALL for a derived fixed point
type is only allo-.:c- if the resulting model numbers are
(representa'.le) values c-f the parent type.

CD2A52C, CD2A52D, CD2A52,. CD2A52H, CD2A54C, CD2A54D, and CD2A54H (
7 tests) are not appiicable because these tests contain size
representation clauses that are illegal for certain derived fixed-
point subtypes due to the particular base type selected by the
implementation.

CD2A61A, CD2A615, CD2 '.C, CD2A6!D, CD2A61F, CD2A61H, CD2A61I,
CD2A61J, CliA6K, CDA1.0L, 2A62A, CD2A62B, CD2A62C, CD2A64A,
CD2A64B, C:;2A6-C, CD2A ,D. CD2A65A, CD2A65B, CD2A65C, and CD2A65D
(21 tests) are not applicable because this implementation does not
support packing by means of a length clause for an array type.

3-3

CD2ATIA, CE-A71, CDA71C, CD2A71D, CD2A72A, CD2A72B, CD2A72C,
CD2A72D, CDAT.A, CD2A74B, CD2A74C, CD2A74D, CD2A75A, CD2A75B,
CD2A75C, and CD2A75D f'-6 tests) are not applicable because this
implementation does not support packing by means of a length clause
for a record tvye.

CD2AS4 B, C , CD... CD2AS-4E, CD2A84F, CD2A84G, CD2A84H,
CD2AS.-,I, CLAS.K, and CDLFAS-L (10 tests) are not applicable because
this imp Ientatio, does not support biased pointer
representations.

CD2BI5B is not applicable because the LRM 13.7.2(12) states that
T'STORAGE SIZE for an access type or subtype T "yields the total
number of storage units reserved for the collection associated with
the base type of T." The meaning of "total number of storage units
reserved" is open to interpretation and it is possible for an
implementation to return one of two values: the number of bytes
requested (and reserved) or the number of bytes actually allocated.
T. .s compiler implements the former.

CE2102D i_ not applicable because this implementation supports
CREATE with ',_FILE mode for SEQUENTIAL_10.

CE2Io2E :;u: applift because this implementation supports
CREATE with 0UTF'LE mode for SEQUENTIAL 10.

CE2102F is not applicable because this implementation supports
CREATE with INOUT FILE mode for DIRECT_10.

CE2!02i is not applicabl)e because this implementation supports
CREATE wit i F;LE mode ior DIRECT 10.

CE21022 J is not applicable because this implementation supports
CREATE ... _T FILE mode for DPECT iO.

CE . is arpplicable because this implementation supports OPEN

CE21[Oi li :-.o a .-ic tebecaLuse this implementation supports
RESET wit:; "_FILE n:ode for SE :UE::TIAL_IO.

CE2!02P is not appicaole because this implementation supports OPEN
with OUTFILE -ode for SE.,NTIAL.

CE2102Q is not applicable because this implementation supports
RESET with OUT FILE mode for SEQUENTIAL_10.

CE-2lZR is nct applicable because this implementation supports OPEN
with IN-UT FILE :ode for :0R.CT :O.

CE2102S is not applicable because this implementation supports
RESET with INOUT FILE mode for DIRECTIO.

3-4

CE2102T is not applicable because this implementation supports OPEN
with INFILE mode for DIRECTIO.

CE2102U is not applicable because this implementation supports
RESET with IN FILE mode for DIRECTIO.

CE21_02 is not applicable because this implementation supports OPEN
with OUT FILE mode for DIRECT_10.

CE2102W is not applicable because this implementation supports
RESET with OUT FILE mode for DIRECT_10.

CE2105A is inapplicable because CREATE with IN FILE mode is not
supported by this implementation for SEQUENTIALIO.

CE21O5B is inapplicable because CREATE with INFILE mode is not
supported by this implementation for DIRECTIO.

CE2107B CE21O7E, CE2107G, CE2107L, CE211OB, CE211OD, CE2111H,
CE3111B, CE3111D, CE311!E, CE3114B, and CE3115A (12 tests) are not
applicable because this implementation does not allow more than one
association for OUT FILE or INOUTFILE in combination with mode
I: FILE or u'l.0oher mode OUT FILE or INOUT FILE (mixed readers and
writers or multiple writers) unless a non-default FORM string is
specified. The proper exception is raised when multiple access is
attempted.

CE2107C, CE21O7D, CE21O7H, CE2108B, CE2108D, and CE3112B (6 tests)
are not applicable because this implementation does not support
names for temporary fi .e and the NAME function raises USEERROR if
called with such a file under the terms of AI-00046.

CE211IC and CE2IIID are not applicable because this implementatior
does not allow the mode of the file to be changed from INFILE to
.,OT FILE or OUT FILE.

CE2-: - is nt a ::.me b)ecause this implementation does not
sutort :>. i::tax~iaton o.f llRECT _O with unconstrained record

Sps :. size is specified in the FORM
parameter of the CREATE proedure. This instantiation is rejected
by this comiler.

CE3102F is not applicable because this implementation supports
RESET for OUT FILE to IN FILE.

CE312C 's not applicable because this implementation supports
deletion o. an external file.

CE31021 is not applicable because this implementation supports
CREATE withi OUT FILE mode.

3-5

CE3102J is not applicable because this implementation supports OPEN
with IN-FILE mode.

CE3102K is not applicable because this implementation supports OPEN
with OUT FILE mode.

CE3109A is inapplicable because text file CREATE with INFILE mode
is not sut'sorted by this implementation.

EE2401D and EE2401G are not applicable because this implementation
does not support the instantiation of DIRECTIO with unconstrained
record types unless a maximum element size is specified in the FORM
parameter of the CREATE procedure. This instantiation is rejected
by this compiler.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. :odifications are made by the AVF in cases
where egiti':at c i;:ementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection: splitting a Class B test into subtests so that all
errors are detected: and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 4 tests.

Tests CS69?'A a:.d CS6C02B check that library units can be named
ST.ADARD w'ithout affecting the predefined environment. There is no
diffitziev ~s ing these tests independently; however, if they are
attzem7ted in t ,e same compilation library in the order named, then
the seco:-~.:e fails to compile because the function body named

T............u i =::,st::utes an il.legal redeclaration of the
Se 1 C- U7i ao :na ed S-:NDARD left over from the compilation

of C8600 .

CBi00D uses a procedure OVERFLOW STACK that is coded so that it
needs essentially no local storage. Thus, it allows the maximum
number of frames to be allocated in a given amount of memory. The
VAX/VMS operating environment limits the number of frames that an
exception can propagate to 65,535 frames; beyond that limit the
run-time structure of the program is assumed to be corrupted and
the program is aborted abnormally, execution of the program using
common user allocation quotas typically results in more than 65,535
frames and leads to abnormal termination when STORAGE ERROR is then
detected. This test was included in the normal batch command test
sequence, but processing .as modified so that the test was executed

3-6

in a :tore !:rired address s:.i:e.

C3- .CD ch"ec.ks that a der'ived ty:pe inherits various properties from

,he parent: zte 'SIZE attribute is used in the tests under

assmpo:-. that are no: :fl" supported by the Ada standard, and

are su'..:us, an implementation is ruled to

have , .. -
: . s: : te result (REPORT.RESULT) is PASSED, or

e- the sole cause of failure is indicated

b% , . REPORT.FAILED below:

,?-.6D: ".CO.,ECT OBJECT'SIZE"

This i:r:a l:-tation re-porzs the above message and only the above

message.

3.7 ADDITIONAL :zS::';G ,,FCJ.I' ,-"N

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10

produced by the .',- A'a ",'erslon 2.0 compiler was submitted to the AVF by

the anplica: :-" - ." Ana .is Cf these results demonstrated that

the compile- : ... picabe tests, and the compiler

exhibited the e::ected oehai:or... inapplicable tests.

3.7.2 Test M-ethod

Testing of t.e ".'. .- './a .ersion 2.2 compiler using ACVC Version 1.10 was

conducted on-site by validation team from the AVF. The configuration

in which the -es::n4 .-as rerformned is described bv the following

designations o .a--d,,are and sc2t.,are components:

H OSt :c ::.r"... . ,_

Host o~-:;:.2 s'.'s : "..z, ".ursior. i.

-- ...: r ion 5.0

-. erson 2.0

A magnetic cnaining ail tests -.:as taken on-site by the validation

team for processing. Tests that make use of implementation-specific

values were customized before being written to the magnetic tape. Tests

requiring rodifications during the prevalidation testing were included

in their ,odifte- forn on the magnetic tape.

TEST I:,O0P2.A:::

The contents of the magnetic tape were looded directly onto the host

3-7

computer. After the test files were loaded to disk, the full set of
tests was compiled, linked, and all executable tests were run on the VAX

8800. Results were printed from the host computer.

The compiler was tested using command scripts provided by Digital

Equipment Corporation and reviewed by the validation team. The compiler

was tested using the following option settings. See Appendix E for a

complete listir; of the compiler options for this implementation.

/NOAN;ALYSISDATA
/CHECK
/COPY SOURCE
/NODEBUG
/NODIAGNOSTICS

/ERRORLIMITl00
/LIBRARY-ADA$LIB

/LIST
/NOMACHINE CODE
/NOTESOURCE
/OPTIMIZE

/NOSHOW

/WARN IN0 S =de fault

Tests were compiled, linked, azud executed using a single computer. Test
output, compilation listings, and job logs were captured on magnetic

tape and archived at the AV'F. The listings examined on-site by the

validation team were also archived.

3.7.3 Test Site

Testing was conducted at Nashua, New Hampshire and was completed on

01-27-89.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

Digi:a! juipment Corporation has submitted the followingDeclara:-on of Conformance concerning the VAX Ada Version 2.0.

A-1

Digital Equipment Corporation is currently engaged in an Ada
validation and has submitted the following declaration of
conformance concerning VAX Ada.

Declaration of Conformance

Compiler Implementer:
Digital Equipment Corporation

Ada Validation Facility:
National Institute of Standards and Technology

Ada Compiler Validation Capability Version: 1.10

Base Configuration:

Compiler: VAX Ada Version 2.0

Host Configuration:

VAX 8800 (under VMS, Version 5.0)

Target Configuration:

VAX 8800 (under VMS, Version 5.0)
MicroVAX II (under VAXELN Toolkit, Version 3.2

in combination with VAXELN Ada, Version 2.0)

Declaration of Conformance

Derived Compiler Registration:

Compiler: VAX Ada Version 2.0

Host Configurations:

MicroVAX I
MicroVAX II
MicroVAX 2000
MicroVAX 3500
MicroVAX 3600
VAXstation II
VAXstation 2000
VAXstation 3200
VAXstation 3500
VAXstation 8000
VAXserver 3500
VAXserver 3600
VAXserver 3602
VAXserver 6210
VAXserver 6220
VAX-11/730
VAX-11/750
VAX-11/780
VAX-11/785
VAX 6210
VAX 6220
VAX 6230
VAX 6240
VAX 8200
VAX 8250
VAX 8300
VAX 8350
VAX 8500
VAX 8530
VAX 8550
VAX 8600
VAX 8650
VAX 8700
VAX 8800 (base configuration)
VAX 8810
VAX 8820
VAX 8830
VAX 8840
VAX 8842
VAX 8974
VAX 8978
Raytheon Military VAX Computer Mod, ' n

(all under VMS, Version 5.0)

2

Declaration of Conformance

Target Configuration:

Same software and configurations as Host;

And the following VAXELN configurations

MicroVAX I
MicroVAX II
MicroVAX 2000
MicroVAX 3500
MicroVAX 3600
IVAX 620
IVAX 630
rtVAX 1000
rtVAX 3200
rtVAX 3500
rtVAX 3600
rtVAX 8550
rtVAX 8700
KA620
KA800
VAX-11/725
VAX-11/730
VAX-11/750
VAX 6210
VAX 6220
VAX 6230
VAX 6240
VAX 8500
VAX 8530
VAX 8550
VAX 8700
VAX 8800
VAX 8810
VAX 8820

(all under VAXELN Toolkit, Version 3.2 in
combination with VAXELN Ada, Version 2.0)

3

Declaration of Coniormance

All of the processors listed above, including MicroVAX, VAXstation,
and VAXserver systems, are members of the VAX family. The VAX
family includes multiple hardware/software implementations of the
same instruction set architecture. All processors of the VAX family
together with the VMS operating system provide an identical user
mode instruction set execution environment and need not be
distinguished for purposes of validation. Similarly, all VAX family
processors supported as VAXELN Toolkit targets provide an identical
user mode instruction set execution environment.

The Military VAX Computer Model 860 is an implementation of the VAX
architecture that is manufactured by Raytheon Corporation. This
implementation has been tested by Digital Equipment Corporation for
conformance with the VAX Architecture Standard and provides a user
mode instruction set environment that is identical to other members
of the VAX family.

The identical VAX Ada compiler is used on all hosts, and the
compiler has no knowledge of the particular VAX model on which it is
being executed. Further, the compiler generates identical code for
all targets. Thus, the code generated on any VAX host can be
executed without modification on any of the VAX targets listed
above.

All of the configurations listed under the derived compiler
registration section above are equivalent to the base configuration.
That is, all applicable ACVC Version 1.10 tests could be correctly
compiled and executed on any of the configurations listed.

S//,15 February 1989

Bill Keat- g
Senior Group Manager
Software Development Technologies

4

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only ai1o,'ed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as :.enz:ioned i- chapter 13 of the Ada Standard, and to
certain allo,,ed restrictions on representation clauses. The
implementation-dependent characteristics of the VAX Ada Version 2.0
compiler, as described in this Appendix, are provided by Digital
Equipment Corporation. Unless specifically noted otherwise, references
in this appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type INTEGER 4s range -2l.47483648..2147483647;
tvpe SHORT_ :CE1CE is rante -32768._.32768;
type SHORT_ SHORT INTEGER is range -128. .127;

type FLOAT is digits 6 range -!.70141E+38..l.70141E+38;
type LONGFLOAT is digits 15 range

-8.988465674312E+307..8.988465674312E+307;

type LONG LONGFLOAT is digits 33 range
-5.9486574767861588254287966331400E+4931..

5.9486574767861588254287966331400E+4931;

type DUP'TICN: is delta 1.OE-4 range -131072.0..131071.9999;

end .

B-1

APPENDIX B

APPENDIX F OF THE ADA STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of ANSI/MIL-STD-181SA-1983,
and to certain allowed restrictions on representation classes. The
implementation-dependent characteristics are described in the
following sections which discuss topics one through eight as stated
in Appendix F of the Ada Language Reference manual
(ANSI/MIL-STD-1815A). Two other sections, package STANDARD and file
naming conventions, are also included in this appendix.

Portions of this section refer to the following attachments:

1. Attachment 1 - Implementation-Dependent Pragmas

2. Attachment 2 - VAX Ada Appendix F

(1) Implementation-Dependent Pragmas

See Attachment 2, Section F.1 and Attachment 1.

(2) Implementation-Dependent Attributes

Name Type

P'AST ENTRY The value of this attr.bute is of type
SYSTEM.ASTHANDLER.

P'BIT The value of this attribute is of type
universalinteger.

P'MACHINESIZE The value of this attribute is of type
universal-integer.

B-i

APPENDIX F OF THE ADA STANDARD

P'NULLPARAMETER The value of this attribute is of type
P.

P'TYPECLASS The value of this attribute is of type
SYSTEM.TYPECLASS.

(3) Package SYSTEM

See Attachment 2, Section F.3.

(4) Representation Clause Restrictions

See Attachment 2, Section F.4.

(5) Conventions

See Attachment 2, Section F.6.

(6) Address Clauses

See Attachment 2, Section F.7.

(7) Unchecked Conversions

See Attachment 2, Section F.5.

(8) Input-Output Packages

SEQUENTIALIO Package

SEQUENTIAL 10 can be instantiated with any file
type, incTuding an unconstrained array type or an
unconstrained record type. However, input-output
for access types is erroneous.

VAX Ada provides full support for SEQUENTIAL I0,
with the following restrictions and clarifications:

1. VAX Ada supports modes IN FILE and OUT FILE for
sequential input-output. However, VAR Ada does
not allow the creation of a file of mode
IN FILE.

B-2

APPENDIX F OF THE ADA STANDARD

2. More than one internal file can be associated
with the same external file. However, with

default FORM strings, this is only allowed when
all internal files have mode IN FILE (multiple
readers). If one or more internil files have
mode OUT FILE (mixed readers and writers or
multiple writers), then sharing can only be
achieved using FORM strings.

3. VAX Ada supports deletion of an extern file
which is associated with more than one [nternal
file. In this case, the external file becomes
immediately unavailable for any new
associations, but the current associations are
not affected; the external file is actually
deleted after the last association has been
broken.

4. VAX Ada allows resetting of shared files, but an
implementation restriction does not allow the
mode of a file to be changed from INFILE to
OUT FILE (an amplification of accessing
privileges while the external file is being
accessed).

DIRECTIO Package

type CNT is range 0 .. 2147483647;

TEXTIO Package

type CNT is range 0 .. 2147483647;
subtype FIELD is INTEGER range 0 .. 2147483647;

LOW LEVELIO

Lcw-level input-output is not provided.

B-3

APPENDIX F OF THE ADA STANDARD

(9) Package STANDARD

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT SHORT INTEGER is range -128 .. 127;
-- type LONG_INTEGER is not supported

type FLOAT is digits 6;
type LONGFLOAT is digits 15;
type LONG LONG FLOAT is digits 33;
-- type SHORTFLOAT is not supported

type DURATION is delta 1.OE-4
range -131072.0 .. 131071.9999;

(10) File Names

File names follow the conventions and restrictions of the
target operating system.

B-4

ATTACHMENT 1

Predefined Language Pragmas

This annex defines the pragrnas LIST, PAGE, and OPTIMIZE, and
summarizes the definitions given elsewhere of the remaining language.
defined pragmas.

The VAX Ada pragmas IDENT and TITLE are also defined in this annex.

Pragma Meaning

AST-ENTRY Takes the simple name of a single entry
as the single argument; at most one
AST-ENTRY pragma is allowed for any
given entry. This pragma must be used
in combination with the AST-ENTRY
attribute, and is only allowed after the
entry declaration and in the same task
type specification or single task as the
entry to which it applies. This pragma
specifies that the given entry may be
used to handle a VMS asynchronous
system trap ASTi resulting from a VMS
system service call. The pravma does
not affect normal use of the entry (see
9.12a).

2 CONTROLLED Takes the simple name of an access type
as the single argument. This pragma
is only allowed immediately within the
declarative part or package specification
that contains the declaration of the
access type; the declaration must occur
before the pragma. This pragma is

Predefined Language Pragmas 1-1

not allowed for a derived type. This
pragma specifies that automatic storage
reclamation must not be performed
for objects designated by values of the
access type, except upon leaving the
innermost block statement, subprogram
body, or task body that encloses the
access type declaration, or after leaving
the main program (see 4.8).

3 ELABORATE Takes one or more simple names
denoting library units as arguments. This
pragma is only allowed immediately
after the context clause of a compilation
unit (before the subsequent library unit
or secondary unit). Each argument must
be the simple name of a library unit
mentioned by the context clause. This
pragma specifies that the corresponding
library unit body must be elaborated
before the given compilation unit. If the
given compilation unit is a subunit, the
library unit body must be elaborated
before the body of the ancestor library
unit of the subunit (see 10.5).

EXPORT-EXCEPTION Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a VMS
Linker global symbol), a form (ADA
or VMS), and a code (a static integer
expression that is interpreted as a VAX
condition code) as arguments. A code
value must be specified when the form
is VMS (the default if the form is not
specified). This pragma is only allowed
at the place of a declarative item, and
must apply to an exception declared by
an earlier declarative item of the same
declarative part or package specification;
it is not allowed for an exception
declared with a renaming declaration.
This pragma permits an Ada exception
to be handled by programs written in
other VAX languages (see 13.9a.3.2).

1-2 Predefined Language Pragmas

EXPORTFUNCTION Takes an internal name denoting a
function, and optionally takes an external
designator (the name of a VMS Linker
global symbol), parameter types, and
result type as arguments. This pragma is
only allowed at the place of a declarative
item, and must apply to a function
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the function
declaration and before any subsequent
compilation unit. This pragma is not
allowed for a function declared with a
renaming declaration, and is not allowed
for a generic function (it may be given
for a generic instantiation). This pragma
permits an Ada function to be called
from a program written in another VAX
language (see 13.9a.1.4).

EXPORT-OBJECT Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a VMS Linker
global symbol) and size designator (a
VMS Linker global symbol whose value
is the size in bytes of the exported
object) as arguments. This pragma is
only allowed at the place of a declarative
item at the outermost level of a library
package specification or body, and
must apply to a variable declared by
an earlier declarative item of the same
package specification or body; the
variable must be of a type or subtype
that has a constant size at compile time.
This pragma is not allowed for objects
declared with a renaming declaration,
and is not allowed in a generic unit.
This pragma permits an Ada object to
be referred to by a routine written in
another VAX language (see 13.9a.2.2).

Predefined Language Pragmas 1-3

EXPORT-PROCEDURE Takes an internal name denoting a
procedure, and optionally takes an
external designator (the name of a VMS
Linker global symbol) and parameter
types as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of
a procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is not allowed for a procedure
declared with a renaming declaration,
and is not allowed for a generic
procedure (it may be given for a generic
instantiation). This pragma permits an
Ada routine to be called from a program
written in another VAX language (see
13.9a. 1.4).

EXPORT-VALUED.PROCEDURE Takes an internal name denoting a
procedure, and optionally takes an
external designator (the name of a VMS
Linker global symbol) and parameter
types as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of
a procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. The
first (or only) parameter of the procedure
must be of mode out. This pragma is not
allowed for a procedure declared with a
renaming declaration and is not allowed
for a generic procedure (it may be given
for a generic instantiation). This pr-.gma
permits an Ada procedure to behave as

1-4 Predefined Larguage Pragmas

a function that both returns a value and
causes side effects on its parameters
when it is called from a routine written
in another VAX language (see 13.9a.1.4).

IDENT Takes a string literal of 31 or fewer
characters as the single argument. The
pragma IDENT has the following form:

pra. IDENT (string-.literal);

This pragma is allowed only in the
outermost declarative part or declarative
items of a compilation unit. The ,iven
string is used to identify the object
module associated with the compilation
unit in which the pragma IDENT occurs.

IMPORTEXCEPTION Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
VMS Linker global symbol), a form
(ADA or VMS), and a code (a static
integer expression that is interpreted as
a VAX condition code) as arguments.
A code value is allowed only when the
form is VMS (the default if the form
is not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or package
specification; it is not allowed for an
exception declared with a renaming
declaration. This pragma permits a
non-Ada exception (most notably, a VAX
condition) to be handled by an Ada
program (see 13.9a.3.1).

IMPORTFUNCTION Takes an internal name denoting a
function, and optionally takes an external
designator (the name of a VMS Linker
global symbol), parameter types, result
type, and mechanism as arguments. The
pragma INTERFACE must be used with
this pragma (see 13.9). This pragma is

Predefined Language Pragmas 1-5

only allowed at the place of a declarative
item, and must apply to a function
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the function
declaration and before any subsequent
compilation unit. This pragma is allowed
for a function declared with a renaming
declaration; it is not allowed for a
generic function or a generic function
instantiation. This pragma permits a
non-Ada routine to be used as an Ada
function (see 13.9a.1.1).

IMPORT-OBJECT Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a VMS Linker
global symbol) and size (a VMS Linker
global symbol whose value is the size
in bytes of the imported object) as
arguments. This pragma is only allowed
at the place of a declarative item at the
outermost level of a library package
specification or body, and must apply
to a variable declared by an earlier
declarative item of the same package
specification or body; the variable
must be of a type or subtype that has

a constant size at compile time. This
pragma is not allowed for objects
declared with a renaming declaration,
and is not allowed in a generic unit. This
pragma permits storage declared in a
non-Ada routine to be referred to by an
Ada program (see 13.9a.2.1).

IMPORTPROCEDURE Takes an internal name denoting a
procedure, and optionally takes an
external designator (the name of a
VMS Linker global symbol) parameter
types, and mechanism as arguments.
The pragma INTERFACE must be
used with this pragma (see 13.9). This

1-6 Predefined Language Pragmas

pragma is only allowed at the place
of a declarative item, and must apply
to a procedure declared by an earlier
declarative item of the same declarative
part or package specification. In the case
of a procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declaration; it
is not allowed for a generic procedure
or a generic procedure instantiation.
This pragma permits a non-Ada routine
to be used as an Ada procedure (see
13.9a. 1. 1).

IMPORTVALUEDJPROCEDURE Takes an internal name denoting a
procedure, and optionally takes an
external designator (the name of a
VMS Linker global symbol), parameter
types, and mechanism as arguments.
The pragma INTERFACE must be
used with this pragma (see 13.9). This
pragma is only allowed at the place
of a declarative item, and must apply
to a procedure declared oy an earlier
declarative item of the same declarative
part or package specification. In the case
of a procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. The
first (or only) parameter of the procedure
must be of mode out. This pragma
is allowed for a procedure declared
with a renaming declaration; it is not
allowed for a generic procedure. This
pragma permits a non-Ada routine that
returns a value and causes side effects
on its parameters to be used as an Ada
procedure (see 13.9a.1.1).

INLINE Takes one or more names as arguments;
each name is either the name of a

Predefined Language Pragmas 1-7

subprogram or the name of a generic
subprogram. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit in a
compilation, but before any subsequent
compilation unit. This pragma specifies
that the subprogram bodies should be
expanded inline at each call whenever
possible; in the case of a generic
subprogram, the pragma applies to calls
of its instantiations (see 6.3.2).

INLINEGENERIC Takes one or more names as arguments;
each name is either the name of a
generic declaration or the name of an
instance of a generic declaration. This
pragma is only allowed at the place
of a declarative item in a declarative
part or package specification, or after a
library unit in a compilation, but before
any subsequent compilation unit. Each
argument must be the simple name of
a generic subprogram or package, or a
(nongeneric) subprogram or package,
declared by an earlier declarative item
of the same declarative part or package
specification. This pragma specifies that
inline expansion of the generic template
is desired for each instantiation of the
named generic declarations or of the
particular named instances; the pragma
does not apply to calls of instances of
generic subprograms (see 12.1a).

INTERFACE Takes a language name and a
subprogram name as arguments. This
pragma is allowed at the piace of a
declarative item, and must apply in
this case to a subprogram declared by
an earlier declarative item of the same
declarative part or package specification.
This pragma is also allowed for a library
unit; in this case the pragma must appear
after the subprogram declaration, and

1-8 Predefined Language Pragmas

before any subsequent compilation unit.
This pragma specifies the other language
(and thereby the calling conventions)
and informs the compiler that an
object module will be supplied for the
corresponding subprogram (see 13.9).

In VAX Ada, the pragma INTERFACE
is required in combination with the
pragmas IMPORT-FUNCTION,
IMPORT-PROCEDURE, and IMPORT
VALUED-PROCEDURE when any of
those pragmas are used (see 13.9a.1).

LIST Takes one of the identifiers ON or OFF
as the single argument. This pragma is
allowed anywhere a pragma is allowed.
It specifies that listing of the compilation
is to be continued or suspended until a
LIST pragma with the opposite argument
is given within the same compilation.
The pragma itself is always listed if the
compiler is producing a listing.

LONG-FLOAT Takes either D-FLOAT or GFLOAT
as the single argument. The default is
G-FLOAT. This pragma is only allowed
at the start of a compilation, before
the first compilation unit (if any) of
the compilation. It specifies the choice
of representation to be used for the
predefined type LONG-FLOAT in the
package STANDARD, and for floating
point type declarations with digits
specified in the range 7..-1 (see 3.5.7a).

NIAINSTORAGE Takes one or two nonnegative static
simple expressions of some integer
type as arguments. This pragma is only
allowed in the outermost declarative
part of a library subprogram; at most
one such pragma is allowed in a library
subprogram. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
causes a fixed-size stack to be created

Predehned Language Pragmas 1-9

for a main task (the task associated with
a main program), and determines the
number of storage units (bytes) to be
allocated for the stack working storage
area or guard pages or both. The value
specified for either or both the working
storage area and guard pages is rounded
up to an integral number of pages. A
value of zero for the working storage
area results in the use of a default size; a
value of zero for the guard pages results
in no guard storage. A negative value for
either working storage or guard pages
causes the pragma to be ignored (see
13.2b).

MEMORY-SIZE Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before
the first compilation unit (if any) of the
compilation. The effect of this pragma is
to use the value of the specified numeric
literal for the definition of the named
number MEMORYSIZE (see 13.7).

a OPTIMIZE Takes one of the identifiers TIME
or SPACE as the single argument.
This pragma is only allowed within a
declarative part and it applies to the
block or body enclosing the declarative
part. It specifies whether time or space
is the primarv optimization criterion.

In VAX Ada, this pragma is only allowed
immediately within a dc. larative part of
a body declaratior,

PACK Takes the simple r.ame of a record or
array type as the single argument. The
allowed positions for this pragma, and
the restrictions on the named type,
are governed by the same rules as for
a representation clause. The pragma
specifies that storage minimization
should be the main criterion when

1-10 Predefined Language Pragmas

selecting the representation of the given
type (see 13.1).

,0 PAGE This pragma has no argument, and is
allowed anywhere a pragma is allowed.

It specifies that the program text which
follows the pragma should start on a
new page (if the compiler is currently
producing a listing).

PRIORITY Takes a static expression of the
predefined integer subtype PRIORITY as
the single argument. This pragma is only
allowed within the specification of a task
unit or immediately within the outermost
declarative part of a main program. It
specifies the priority of the task (or tasks
of the task type) or the priority of the
main program (see 9.8).

PSECTOBJECT Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a program
section) and a size (a VMS Linker global
symbol whose value is interpreted as the
size in bytes of the exported/imported
object) as arguments. This pragma is
only allowed at the place of a declarative
item at the outermost level of a library
package specification or body, and must
apply to a variable declared by an earlier
declarative item of the same package
specification or body; the variable
must be of a type or subtype that has
a constant size at compile time. This
pragma is not allowed for an object

declared with a renaming declaration,
and is not allowed in a generic unit. This
pragma enables the shared use of objects
that are stored in overlaid program
sections (see 13.9a.2.3).

12 SHARED Takes the simple name of a variable as
the single argument. This pragma is
allowed only for a variable declared by
an object declaration and whose type

Predefined Language Pragmas 1-11

is a scalar or access type; the variable
declaration and the pragma must both
occur (in this order) immediately within
the same declarative part or package
specification. This pragma specifies that
every read or update of the variable
is a synchronization point for that
variable. An implementation must
restrict the objects for which this pragma
is allowed to objects for which each of
direct reading and direct updating is
implemented as an indivisible operation
(see 9.11).

SHARE-GENERIC Takes one or more names as arguments;
each name is either the name of a
generic declaration or the name of an
instance of a generic declaration. This
pragma is only allowed at the place
of a declarative item in a declarative
part or package specification, or after a
librar," unit in a compilation, but before
any subsequent compilation unit. Each
argument must be the simple name of
a generic subprogram or package, or a
(nongeneric) subprogram or package,
declared by an earlier declarative item
of the same declarative part or package
specification. This pragma specifies
that generic code sharing is desired for
each instantiation of the named generic
declarations or of the particular named
instances (see 12.!b).

STORAGEUNIT Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before
the first compilation unit (if any) of the
compilation. The effect of this pragma is
to use the value of the specified numeric
literal for the definition of the named
number STORAGE-UNIT (see 13.7).

In VAX Ada, the only argument allowed

for this pragma is 8 (bits).

1-12 Predefined Language Pragmas

SUPPRESS Takes as arguments the identifier of a
check and optionally also the name of
either an object, a type or subtype, a
subprogram, a task unit, or a generic
unit. This pragma is only allowed
either immediately within a declarative
part or immediately within a package
specification. In the latter case, the
only allowed form is with a name that
denotes an entity (or several overloaded
subprograms) declared immediately
within the package specification. The
permission to omit the given check
extends from the place of the pragma
to the end of the declarative region
associated with the innermost enclosing
block statement or program unit. For a
pragma given in a package specification,
the permission extends to the end of the
scope of the named entity.

If the pragma includes a name, the
permission to omit the given check is
further restricted: it is given only for
operations on the named object or on
all objects of the base type of a named
type or subtype; for calls of a named
subprogram; for activations of tasks of
the named task type; or for instantiations
of the given generic unit (see 11.7).

SUPPRESSALL This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that all run-
time checks in the unit are suppressed
(see 11.7).

SYSTEM-NAME Takes an enumeration literal as the single
argument. This pragma is only allowed
at the start of a compilation, before
the first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the enumeration literal with
the specified identifier for the definition
of the constant SYSTEMNAME. This

Predefined Language Pragmas 1-13

pragma is only allowed if the specified
identifier corresponds to one of the
literals of the type NAME declared in the
package SYSTEM (see 13.7).

TASKSTORAGE Takes the simple name of a task type
and a static expression of some integer
type as arguments. This pragma is
allowed anywhere that a task storage
specification is allowed; that is, the
declaration of the task type to which the
pragma applies and the pragma must
both occur (in this order) immediately
within the same declarative part, package
specification, or task specification. The
effect of this pragma is to use the value
of the expression as the number of
storage units (bytes) to be allocated as
guard storage. The value is rounded up
to an integral number of pages: a value
of zero results in no guard storage; a
negative value causes the pragma to be
ignored (see 13.2a).

TIME-SLICE Takes a static expression of the
predefined fixed point type DURATION
(in package STANDARD) as the single
argument. This pragma is only allowed
in the outermost declarative part of a
library subprogram, and at most one
such pragma is allowed in a library
subprogram. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
specifies the nominal amount of elapsed
time permitted for the execution of a task
when other tasks of the same priority are
also eligible for execution. A positive,
nonzero value of the static expression
enables round-robin scheduling for all
tasks in the subprogram; a negative or
zero value disables it (see 9.8a).

1-14 Predefined Language Pragmas

TITLE Takes a title or a subtitle string, or both,
in either order, as arguments. The
pragma TITLE has the following form:

prapa TITLE (titling-option
[titling-option]);

titling-option :-
[TITLE ->] string-literal

I [SUBTITLE ->] string-litera.

This pragma is allowed anywhere a
pragma is allowed; the given strings
supersede the default title andlor subtitle
portions of a compilation listing.

VOLATILE Takes the simple name of a variable
as the single argument. This pragma
is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must both
occur (in this order) immediately within
the same declarative part or package
specification. The pragma must appear
before any occurrence of the name of the
variable other than in an address clause
or in one of the VAX Ada pragmas
IMPORT-OBJECT, EXPORT-OBJECT,
or PSECTOBJECT. The variable cannot
be declared by a renaming declaration.
The pragma VOLATILE specifies
that the variable may be modified
asvnchronously. This pragma instructs
the compiler to obtain the value of a
variable from memo-v each time it is
used !see 9.11).

Predefined Language Pragmas 1-15

ATTACHMENT 2

Implementation-Dependent Characteristics

NOTE

This appendix is not part of the standard definition of the Ada
programming language.

This appendix summarizes the implementation-dependent characteristics of

VAX Ada by presenting the following:

* Lists of the VAX Ada pragmas and attributes.

* The specification of the package SYSTEM.

* The restrictions on representation clauses and unchecked type
conversions.

• The conventions for names denoting implementation-dependent
components in record representation clauses.

* The interpretation of expressions in address clauses.

* The implementation-dependent characteristics of the input-output
packages.

* Other implementation-dependent characteristics.

F.1 Implementation-Dependent Pragmas

VAX Ada provides the following pragmas, which are defined elsewhere in
the text. In addition, VAX Ada restricts the predefined language pragmas
INLINE and INTERFACE, and provides alternatives to the pragmas SHARED
and SUPPRESS (VOLATILE and SUPPRESSALL). See Annex B for a
descriptive pragma surnmar,.

* AST-ENTRY (see 9.121).

* EXPOPTEXCErTION (see 13.1a.3.2)

Im Iermentalton-DeOendent Characteristics 2-1

*EXPORT-FUNCTION (see 13.9a.1.4).
* EXPORT-OBJECT (see 13.9a...'2).
* EXPORTPROCEDURE (see 13.9a.1.4).
* EXPORT-VALUED-PROCEDURE (see 13.9a.1.4).
* IDENT (see Annex B).
" IMPORT-EXCEPTION (see 13 .9a .3.1).
* IMPORT-FUNCTION (see 13.9a.1.1).
* IMPORT_.OBJECT (see 13.9a.2.1).
" IMPORT-PROCEDURE (see 13.9a.1.1).
" IMPORT- VA LUED_ PROCEDURE (see 13.9a.1.1).
" INLINE-GENERIC (see 12.1a).
* LONG-~FLOAT (see 3.5.7a).
* MAIN-STORAGE (see 13.2b).
* PSECTOBJECT (see 13.9a.2.3).
" SUPPRESS-ALL (see 11.7).
" TASK-STORAGE (see 13.2a).
* TIME-SLICE (see 9.8a).
* TITLE (see Annex B).
" VOLATILE (see 9.11).

F.2 Implementation-Dependent Attributes

VAX Ada provides the following attributes, which are defined elsewhere in
the text. See Ar-flex A for 1 descriptive attribute summarv.

* AST-ENTRY (see 9.12a).
" BIT (see 13.7.2).
" MACHINE-SIZE (see 13.7.2).
" NULL PARAMIETER (see 13.1a.1.3).

* T-YPE_.CLASS (see 13.7a.2).

2-2 Implementation-Dependent Characteristics

F.3 Specification of the Package System

package SYSTEM Is

type NAME is (VAX-VMS. VAXELN);

SYSTEM-NAME constant NAME :- VAX_',JS.
STORAGEUNIT constant - 8;
MENORYSIZE constant = 2,"31-1;
MAX_INT constant - 2**31-1;
MININT constant -0-31);
MAXDIGITS constant - 33;
MAXMANTISSA constant - 31;
FINEDELTA constant :0 2 0',(-31);
TICK constant :m 10.0**(-2);

subtype PRIORITY is INTEGER range 0 _ 15;

Address type

type ADDRESS is private;

ADDRESS-ZERO : constant ADDRESS;

function "*" (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;
function " (" CLEFT INTEGER; RIGHT ADDRESS) return ADDRESS;

function ... (LEFT ADDRESS; RIGHT ADDRESS) return INTEGER;
function "-" (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;

function "=" (LEFT. RIGHT ADDRESS) return BOOLEA11;

function " " CLEFT. RIGHT ADDRESS) return BOOLEAN;
function "<" (LEFT. RIGHT ADDRESS) return BOOLEAN;
function "<=(CLEFT, RIGHT ADDRESS) return BOOLEAN;
function ">" (LEFT. RIGHT ADDRESS) return BOOLEMA;
function ">,=, (LEFT. RIGHT ADDRESS) return BOOLEAN1;

- Note chat because ADDRESS is a private type

-- the functions "*" and "/" are already available and
-- do not have tc be explicitly defined

generic

type TARGE7 is private;
function FETCHFROM ADDRESS (A ADDRESS) return TARG7.

generic
type TARGET in private,

procedure ASSIGNS_TOADDRESS (A ADDRESS; T TARGE7);

-- VAX Ada floating point type declarations for the VAX

-- hardware floating point data types

type FFLOAT is ,mplsmentat:'n defino.d.
type DFLOAT is implomnntat)n-dofinrd.
type GFLOAT is zmpIe',ntit,n_d,.fin'd.
type HFLOAT is emplementat-n_d,'finp',

Imp mentation-DeDpendent Characteristics 2-3

type TYPE-CLASS is (TYPE-CLAS S - ENIMERLAT ION.
TYPE-CLASS-JNTECER.
TYPE-CLASS-FIXD-PGINT,
flPECLASS-FLOATIG-POINT.
TYPE-CLASS-ARAY.

TYPE-CLAS S-.RECO RD
TYP E-CLAS S-ACCES S
TYPE-CLASS-TASK.
TY P ECLA S SADD RES S)

-- AST handler type

type AST-HANDLER in linaited private,

NO-ASTHAIDLER :constant AST-HANDLER,

Non-Ada exception

NON-ADA-EROR :exception;

-- VAX hardware-oriented types and functions

type BIT-ARRAY in array (INTEGER range <>) of BOOLEANI;
pragma PACK CBIT-ARRAY);

subtype BIT-ARRAY-8 In BIT-ARRAY (0 7).
subtype BIT-ARLAY-16 is BITARRAY (0 16);
subtype BIT-ARLAY-32 In BIT-AR.AY (0 31);
subtype BIT-ARRAY-64 In BIT-ARRAY (0 83);

.yp. UNSIGNED-BYTE Is range 0 .. 255;
for UNSIGNED-BYTEISIZE use 8;

function "not" (LEFT UNSIGNED.BYTE) return UNSIGIIED..BYTE:
function "and" (LEFT. RIGHT UNSIGNIEDBYTE) return UISIGIIEDBYTE;
function "or" (LEFT. RIGHT UNSIGNED_.BYTE) return UIISIGIIEDBYTE;
function "xor" (LEFT, RIGHT UNSIGNED.BYTE) return UNSIGIED-BYTE.

function T0-UNSIGNEDBYTE (X BITARR.AY_..) return WISIGUED-BYTF.
function TO..BITARRAYB (X :UNSIG1JED-BYTE) return BE2_ARRAYS;

type UIISIGIED-BYTE-.ARRAY Is array (IIUTECrE. range <>) of tfJIS ITE)_YTE.

type UNSIGNED-WORD is range 0 655535,
for UIJSIG1IED-WORD1 SIZE use 16.

"unction 'not" (LEFT UI1SICNjED w0RD) return U1:S-;7D_'NORD
function 'end" (L=7, RIGHT UNSIGIIECWCRD) return uJNS:G::ED_1WORD1
function "ocr" (LEFT. RIGHT UNS I GIED_ WORD) return L7IS'1NEDWORD.
function "xor" (LEFT. RIGHT UIISIGIIEDWORD) return UNSIGClED-WORD;

function TO-UNSIGNEDWORD (X BITARRAY_16) return WISIGlIED_1ORD;
function TO-BIT-ARFAY 16 X .UriSIGIIEDWORD) return BIT.-ARRAY18;

type UIS I GED-WORD-ARRAY is array (INTEGER range ->) of UN~SIGNED-O.D,

type UNSIG11ED-LOJGWORD is range MIU _ INT MAX-.NT.
for UlISIGIIED-LONGWORO 'SIZE use 2.

2-4 rnowementation-Dec~ercient Chara :eris!cs

function "not" (LEFT IUSIGIEDLDNGWORD) return UNSIGNEDLONGWORD;
function "and" (LE7'. RIGHT UNSIGIJED-LONGWORD) return UNSIGtJED-LONCWORD;
function "or" (LEFT, RIGHT~ UNSIGNED-LONGWDRD) return UNSIGNEDLDNGWORD;
function "xor" (LEFT, RIGHT UNSIGNEDLDNGWOR.D) return UNSIGNED-LONGWORD;

function TO UNSIGNED-LONOWAORD (X BIT-ARRAY-32)
return UNSIGNED -LONCWORD;

function TO-BIT-ARLAY-32 (X UNSIGNEDLNGWORD) return BITARRAY_3:

type UNSIGNED-LONGWORD-ARRAY in
array (INTEGER range <>) of UNSIGNED_.DNGWORD;

type UNSIGNED-UADWORD is record
LO UNSIGNED-LONGWORD;
Li UNSIGNEDLONGWORD;
and record;

f or UNSIG1JED-QUADWORDSIZE use 84;

function "not" (LEFT UNSIGNED.QUADWORD) return UNSIGNED-QUADWORD;
function "and'* (LEFT, RIGHT UNSIGNED.QUADVDRLD) return UNSIGNED_.QUADWORD;
function "or" (LEFT. RIGHT UNSIGNEDQ.UADWORD) return UNSIGNEDgUADWORD;
function "xor' (LEFT. RIGHT UNS IGNEDQUADWORD) return UNSIGNEDgUADWORD;

function TO-UNSIGNEDUADWORD (X : BTARRAY_84)
return UNSIGNED-QUKDWORD:

V-=ctlon TCBITARRAY..6-; r SX U NEDQlADWORD) return BITARRAY_54.

type UriSI GNED_ UADWORD-ARRAY is
array (INTEGER range <>) of UNSIGIIEDQUADWORD,

function TO-ADDRESS (X INTEGER) return ADDRESS;
function TO ADDRESS (X UNSIGIIEDLONGWORD) return ADDRESS.
function TC-ADDRESS (X unwversaI,:nteger) return ADDRESS;

function TO_ INTEGER (X ADDRESS) return INTEGER;
function TO-UNSIGNEDLNGWORD (X ADDRESS) return UNSIGNED-LONGWDRD;

function 10-UNSIGNED-LCIGWORD (X AST-HAUDLER) return UNSIGNED-LONG'IORD;

Conventiona2. names for static subtypes of type UNSIGNED..LUGWDRD

subtype UNSIGNED-1 is UNSIGNED-LONGWORD range 0 2** 1-1.
subtype UUlS:GliD-.2 Is U!ISIGNEDLONGWORD range 0 2- 2-1,
subtype USIGNE23 is UNSIGNED-LONGWORD range C 2*- 3-1subtype UNSIGNED-4 is UNfS:GNED.LOiGWORD range 0 2- 4-11
subtype U1NSI3NE- is tUNS:;,lD LOrGWORD range C 2-- 5-I.
subtype USG1E6is UNSIGNE DLOWORD range 0 2"" C-1.
subty-pe UNSGCNED-7 is UtISIGNEDLOII1GWORD range 0 2"" 7-1.
subtype UNSIGNED-8 Is UNSIGNED..LONGWDRD range 0 2-- 8-1.
subtype UNS:GNED..9 is WT:s:GNEDLCGCORO range 0 2-" 9-1,
subtype UNSIGINED_10 is UNS IGNED-LOG0MORD range 0 2-10-1;
subtype UNS IGNED 1 is UNS IGJED-LONGWDORD range 0 2*"" 1-1.
subtype UNSIGNJED 12 Is UNSIOJED-LONGWORD range 0 2-"12-1.
subtype UNS:GNED-13 is W!SIGNiEDLOGWORD range 0 2-"13-1.
subtype UNSIGNED14 Is UNSIGNED-LONCWORD range 0 2-"14-1.
subtype UNSISNED-16 in UNSTCNED-LONGW0RD range 0 2-16-1.

lm~lernertativDependent Charactersfcs 2-5

subtype UNSIGNED-18 is UNSICNEDLONGWORD range 0 20016-I,
subtype UNSIGNED_17 it UNSIGNEDLONGWORD range 0 2*-17-1.
subtype UNSIGNED-18 is UNSIGNEDLONGWORD range 0 2-,18-I;
subtype UNSIGNED-19 is UNSIGNEDLONGWORD range 0 2-.19-I;

subtype UNSIGNED-20 is UNSIGNEDLONGWORD range 0 2-=20-I
subtype UNSIGNED-21 is UNSIGNEDLONGWORD range 0 2**21-I;
subtype UNSIGNED-22 is UNSIGNEDLONGWORD range 0 2*-22-1;
subtype UNSIGNED-23 is UNSIGNEDLONGWORD range 0 2**23-1;
subtype UNSIGNED-24 is UNSIGNEDLONGWORD range 0 2**24-1;
subtype UNSIGNED-25 is UNSIGNED-LONGWORD range 0 2**25-I;
subtype UNSIGNED-28 is UNSIGNEDLONWORD range 0 2**26-I;
subtype UNSIGNED-27 is UNSIGNEDLONGWORD range 0 2-*27-1;
subtype UNSIGNED-28 is UNSIGNEDLONGWORD range 0 2,*28-1;
subtype UNSIGNED-29 is UNSIGNEDLONGWORD range 0 2--29-1;
subtype UNSIGNED-30 is UNSIGNEDLONGWORD range 0 2**30-1;
subtype UNSIGNED-31 is UNSIGNED-LONGWORD range 0 2**31-1;

Function for obtaining global symbol values

function IMPORTVALUE (SYMBOL : STRING) return UNSIGNEDLONGWORD.

VAX device and process register operations

function READ-REGISTER (SOURCE UNSIGNEDBYTE) return UNSIGNEDBYTE:
function READ-REGISTER (SOURCE UNSIGNEDWORD) return UNSICNED-WORD;
function READREGISTER (SOURCE UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD;

procedure WRITE.REGISTER(SOURCE UNSIGNEDBYTE;
TARGET out UNSIGNEDBYTE);

procedure WRITEREGISTER(SOURCE UNSIGNEDWORD;
TARGET out UNSIGNEDWORD);

procedure WRITE-REGISTER(SOURCE UNSIGNEDLONGWORD;
TARGET out UNSIGNEDLONGWORD);

function MFPR (REGNUMBER INTEGER) return UNSIGNEDLONGWORD,
procedure MTPR (REG-NUMBER INTEGER;

SOURCE UNSIGNEDLONGWCRD);

VAX interlocked-instruction procedures

procedure CLEAR-INTERLOCKED (BIT in out BOOLEAN,
OLD-VALUE out BOOLEAN).

procedure SETINTERLOCKED (BIT in out BOOLEAN.
OLD-VALUE out BOOLEANO.

type AL:GNEDWC is

record
VALUE : SHORT-INTEGER;

end record;
for ALIGNED-WORD use

record
at mod 2;

end record;

procedure ADD-INTERLOCKED (ADDEND in SHORTIJTEGOR.
AUGEUD in out ALIGNEDWOE2.
SIGN out INTEGER),

2-6 ImcDementaton-Derendent Caracteriscs

type INSQSTATUS is (OKNOTFIRST. FAIL_NO LOCK. OKFIRST);
type RE S4QTATUS is (OK-N0T-EMPTY, FAILNOLOCK,

OK-ENPTY, FAILVASEMPTY);

procedure INSQHI (ITEM in ADDRESS;

HEADER in ADDRESS;
STATUS out INSQSTATUS);

procedure REMQHI (HEADER in ADDRESS;
ITEM out ADDRESS;
STATUS out REMQSTATUS);

procedure INSQTI (ITEM in ADDRESS;
HEADER in ADDRESS;
STATUS out INSQSTATUS);

procedure REMQTI (HEADER in ADDRESS;

ITEM out ADDRESS:
STATUS out RENMQSTATUS);

privtte

-- Not shown

end SYSTEM,

F.4 Restrictions on Representation Clauses

The representation clauses allowed in VAX Ada are length, enumeration,
record representation, and address clauses.

In VAX Ada, a representation clause for a generic formal type or a type
that depends on a generic formal type is not allowed. In addition, a
representation clause for a composite type that has a component or
subcomponent of a generic formal type or a type derived from a generic
formal type is not allowed.

F.5 Restrictions on Unchecked Type Conversions

VAX Ada supports the generic function UNCHECKED-CONVER SION wit!)
the following restrictions on the class of types involved:

* The actual subtype corresponding to the formal type TARGET must not
be an unconstrained array type.

* The actual subtype corresponding to the formal type TARGET must not
be an unconstrained type with discriminants.

Imlementaticn.Deoenopni Crharacteristics 2-7

Further, when the target type is a type with discriminants, the value resulting
from a call of the conversion function resulting from an instantiation of
UNCHECKED-CONVERSION is checked to ensure that the discriminants
satisfy the constraints of the actual subtype.

If the size of the source value is greater than the size of the target subtype.
then the high order bits of the value are ignored (truncated); if the size of
the source value is less than the size of the target subtype, then the value is
extended with zero bits to form the result value.

F.6 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

VAX Ada does not allocate implementation-dependent components in
records.

F.7 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in the package SYSTEM (see 13.7a.1 and F.3). In VAX Ada, values
of type SYSTEM.ADDRESS are interpreted as virtual addresses in the VAX
address space.

VAX Ada allows address clauses for variables (see 13 .5).

VAX Ada does not support interrupts as defined in section 13.5.1. VAX
Ada does provide the pragma AST-ENTRY and the AST_ENTRY attribute a:
alternative mechanisms for handling asynchronous interrupts from the VMS
operating system (see 9.12a).

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The VAX Ada predefined packages and their operations are implemented
using VAX Record Management Services (RMS) file organizations and
facilities. To give users the maximum benefit of the underlying VAX RMS
input-output facilities, VAX Ada provides packages in addition to the
packages SEQUENTIAL_10, DIRECTIO, TEXT_1O, and IOEXCEPTIONS,

2-8 Implementation-Deoendent Characteristcs

and VAX Ada accepts VAX RMS File Definition Language (FDL) statements
in form strings. The following sections summarize the implementation-
dependent characteristics of the VAX Ada input-output packages. The VAX
Ada Run-Time Reference Manual discusses these characteristics in more detail.

F.8.1 Additional VAX Ada Input-Output Packages

In addition to the language-defined input-output packages (SEQUENTIAL-
10, DIRECT10, and TEXTJO), VAX Ada provides the following input-
output packages:

* RELATIVE-1O (see 14.2a.3).

" INDEXED-1O (see 14.2a.5).

* SEQUENTIAL MIXED-1O (see 14.2b.4).
• DIRECTMIXED-10 (see 14.2b.6).

• RELATIVE MIXEDIO (see 14.2b.8).

* INDEXEDMIXED 10 (see 14.2b.10).

VAX Ada does not provide the package LOWLEVELIO.

F.8.2 Auxiliary Input-Output Exceptions

VAX Ada defines the exceptions needed by the packages RELATIVEJO,
INDEXED10, RELATIVE MIXED10, and INDEXEDMIXEDIO in the
package AUXIOEXCEPTIONS (see 14.5a).

F.8.3 Interpretation of the FORM Parameter

The value of the FORM parameter for the OPEN and CREATE procedures
of each input-output package may be a string whose value is interpreted as a
sequence of statements of the VAX Record Management Services (RMSi Fie
Definition Language (FDL), or it may be a string whose value is interpre.cd
as the name of an external file containing FDL statements.

The use of the FORM parameter is described for each input-output package
in chapter 14. For information on the default FORM parameters for each
VAX Ada input-output package and for information on using the FORM pa-
rameter to specify external file attributes, see the VAX Ada Run-Time Reference
Manual. For information on FDL, see the Guide to VMS File Applicatio':s and
the VMS File Definition Langiagc Facilitil Manual.

Implementation-Dependent Characteristics 2-9

F.8.4 Implementation-Dependent Input-Output Error Conditions

As specified in section 14.4, VAX Ada raises the following language-defined
exceptions for error conditions that occur during input-output operations:
STATUS-ERROR, MODE-ERROR, NAME-ERROR, USE-ERROR, END_
ERROR, DATA-ERROR, and LAYOUT-ERROR. In addition, VAX Ada raises
the following exceptions for relative and indexed input-output operations:
LOCK-ERROR, EXISTENCE-ERROR, and KEY-ERROR. VAX Ada does not
raise the language-defined exception DEVICE-ERROR; device-related error
conditions cause the exception USE-ERROR to be raised.

The exception USE-ERROR is raised under the following conditions:

* If the capacity of the external file has been exceeded.

• In all CREATE operations if the mode specified is IN-FILE.

* In all CREATE operations if the file attributes specified by the FORM
parameter are not supported by the package.

* In all CREATE, OPEN, DELETE, and ZESET operations if, for the
specified mode, the environment does not support the operation for an
external file.

* In all NAME operations if the file has no name.

* In the WRITE operations on relative or indexed files if the element in the
position indicated has already been written.

* In the DELETE-ELEMENT operations on relative and indexed files if the
current element is undefined at the start of the operation.

* In the UPDATE operations on indexed files if the current element is
undefined or if the specified key violates the external file attributes.

* In the SETLINELENGTH and SETPAGELENGTH operations on text
files if the lengths specified are inappropriate for the external file.

* In text files if an operation is attempted that is not possible for reasons
that depend on characteristics of the external file.

The exception NAMlEERROR is raised as spec:fied in stction 14.4: b% a call
ci a CREATE or OPEN procedure if the string given for the NAME parameter
does not allow the identification of an external file. In VAX Ada. the value
of a NAME parameter can be a string that denotes a VMS file specification
or a VMS logical name (in either case, the string names an external file). For
a CREATE procedure, the value of a NAME parameter can also be a null
string, in which case it names a temporar, external file that is deleted when
the main program exits. The VAX ,4da Rityi-Tmwc Rctcr'ricc Jniuinl explains the
naming of external files in more detail.

2-10 ImoI-'entaticn-D cenrient Criarac-rs:1cs

F.9 Other Implementation Characteristics

Implementation characteristics relating to the definition of a main program.
various numeric ranges, and implementation limits are summarized in the
following sections.

F.9.1 Definition of a Main Program

A main program can be a library unit subprogram under the following
conditions:

* If it is a procedure with no formal parameters. In this case, the status
returned to the VMS environment upon normal completion of the
procedure is the value 1.

" If it is a function with no formal parameters whose returned value is of a
discrete type. In this case, the status returned to the VMS environment
upon normal completion of the function ir the function value.

• If it is a procedure declared with the pragma EXPORTVALUED_
PROCEDURE, and it has one formal out parameter that is of a discrete
type. In this case, the status returned to the VMS environment upon
normal completion of the procedure is the value of the first (and only)
parameter.

Note that when a main function or a main procedure declared with the
pragma EXPORTVALUED-PROCEDURE returns a discrete value whose size
is less than 32 bits, the value is zero or sign extended as appropriate.

F.9.2 Values of Integer Attributes

The ranges of values for integer tvpeF declared in the package STANDARD
are as follows:

SHORT SHORTINTEGER -12q .. 127

SHORT-INTEGER -32768 .. 32767

INTEGER -2147-:83649 .. 2147483647

For the packages DIRECT-1O, RELATIVEJ1O, SEQUENTIAL MIXEDIO,
DIRECTMIXED_10, RELATIVEMIXED 1O, INDEXED MIXED- O, and
TEXT-IO, the ranges of values for the types COUNT and POSITIVE-COUNT
are as follows:

fmplementation-Dependent Characteristics 2-11

COUNT 0 2147483647

POSITIVE-COUNT I 2147483647

For the package TEXTIO, the range of values for the tpe FIELD is as
follows:

FIELD 0 .. 2147483647

F.9.3 Values of Floating Point Attributes

F-floating value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000_000#e-4
approximately 9.53674E-07

SMALL 16*0.8000000#e-21
approximately 2.58494E-26

LARGE 16#0. FFFFF80#e + 21
approximately 1.93428E + 25

SAFEEMAX 127

SAFE-SMALL 16#0.10 0 0000#e-31
approximately 2.93874E-39

SAFE-LARGE 160.7FFFFCO e 32
approximately 1.70141E+38

FIRST -16"0.7FFFFFRe-,-32
approximately -l.70141E4- 38

LAST 1610.7FFFFF9-e e-32
approximately 1.70141 E - 38

MACHINE-RADIX 2

MACHINE MANTISSA 24

MACHINE-EMAX 127

MACHINE-EMIN -127

MACHINE ROUNDS True

MACHINE OVERFLOWS True

2-12 Implementation-Dependent Characteristics

Djfloating value and approximate decimal equivalent

Attribute (where applicable)

D)IGITS 9

MANTISSA 31

EMAX 124

ErSILON 1600.4000_0000_0000Q000*e-7

approximately 9.3132257461548E- 10

SMALL 16#0.8000_0000_0000_00#e-31

approximately 2.3509887016446E-38

LARGE 1600.FFFF-FFEOO(XOOO0#e+ 31

approximately 2.1267647922655E + 37

SAFE-EMAX 127

SAFE-SMALL 1600.100_0000_0000_000#e-31
approximately 2.9387358770557E-39

SAFE-LARGE 1 6#0. 7FFF.YFFFOOOQOO-00#e + 32
approximately 1.70141183381 24E + 38

FIRST -1600. 7FFFFFFFFFFJT8#e +32

approximately -1. .7014118346047E + 38

LAST 1 6#0. 7FFFFFFYFFFFF#e + 32
approximately 1 .7014118346047E4+38

MACHINE-RADIX2

MACHINE-MANTISSA 56

MACHINE-EMAX 127

MACHINE-EMIN -127

MACHINE-ROUNDS True

MIACHINE-OVERFLOWS Trute

Gfloating value and approximate decimal equivalent

Attribute (where applicable)

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 1(,#0.40000000O000000'e-1 2

arproximateiy 8.8A17841 W00)1 E - 16

lmolemeftation-Depfdeflt Characteristics 2-13

C-floating value and approximate decimal equivalent
Attribute 1where applicable)

SMALL 16'0.8000 00(00000 00me-51
approximateiy 1 .944692274332E -62

LARGE 16#0. FFFF FFFF.FFF-E04e -.51
approximately 2.571100870814 E +- 61

SAFE-EMAX 1023

SAFE-SMALL 1 600. 10000000000000#e-255
approximately 5.562684646268E-309

SAFE-LARGE 16'0O.7FFF-FFFF-FFFF-O#e + 256
approximately 8.9)8846567431 2E + 307

FIRST -16*0.7FFFYFFFFFFFF-FC#e + 256
approximately -8.98846567431 2E + 307

LAST 16*0. 7FFF FFFF-FFFF FC#e + 256
approximately 8.98846567431 2E +307

MACHINERADIX 2

MACHINEMANTISSA 53

M%,ACHINE-EMAX 1023

MACHINE-EMIN -1023

MACH[NE-ROUNDS True

MACH INEOVERFLOWS True

H -floating value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 333

MANTISSA11

EMAX

EPSILON Th-l400() 0(00 000 Oo~ 'O n0C'Xlw)(- 0 0~oo~n)e-27
.)37lc)77548Q434I-23QI177U33,-, 7E--,4

SMALL litb'0 800jO)l000 0000 ,))1-I(00(OO?OOIJO-l- -00 I* -I
approximatelyv 1.100656821463791 8210934318020936E- 134

LARGE 16,0. FFFF FFFF FFFF FFFF FFFF FFFF FFFE-0-e -11
approxi ma teiv 4. 5427420268475430b5Q332737QQ3000E -133

SAFE EMAX 16383

2-14 lmplemrentation-Depencer't Characteristics

Hjfloating value and approximate decimal equivalent
Attribute (where applicable)

SAFE_SMALL 16$0.1000 000 00000000_0000000000000#e-4095
approximately 8.405257R5778O233765t5oteg45433044E-4Q3 3

SAFE-LARGE 160.7FFFFFFF FFFF FFFFFFFFFFFFFFFF-O#e + 4096
approximately 5.9486574767861588254287966331400E + 4931

FIRST -16#0.7FFFFFFFFFFFFFFFFFFFFFFFFFFFC e + 4096
approximately -5.9486574767861588254287966331400E + 4931

LAST 1600. 7-FFFFFFFFFFFFFFFFFFFFFFFFFFC#e + 4096
approximately 5.9486574767861 588254287966331400E + 4931

MACHINE-RADIX 2

MACHINEMANTISSA 113

MACHINE EMAX 16383

MACHINEEMIN -16383

MACHINE-ROUNDS True

MACHINEOVERFLOWS True

F.9.4 Attributes of Type DURATION

The values of the significant attributes of the tpe DURATION are as follows:

DURATION DELTA 1.00000E-04

DURATIONISMALL 2- 14

DURATION FIRST -131072.0000

DURATION, LAST 131071.99QQ

DURATION' LRGE 1.3107100Q938Q6484375E - 05

F.9.5 Implementation Limits

Limit Description

32 Maximum number of formal parameters in a subprogram or entrv
declaration that are of an unconstrained record type

255 Maximum identifier length (number of characters)

255 Maximum number of characters in a source line

Implementation-Dependent Characteristics 2-15

Limit Description

245 Maximum number of discriminants for a record type

246- Maximum number of formal parameters in an entry or subprogram
declaration

255 Maximum number of dimensions in an array type

1023 Maximum number of library units and subunits in a compilation
closure'

4095 Maximum number of library units and subunits in an execution
closure,

32757 Maximum number of objects declared with the pragma PSECTOBJECT

65535 Maximum number of enumeration literals in an enumeration type
definition

65535 Maximum number of characters in a value of the predefined type
STRING

65535 Maximum number of frames that an exception can propagate

65535 Maximum number of lines in a source file
-01 - I Maximum number of bits in any object

'The compilation closure of a given unit is the total set of units that the given unit depends
on, directly and indirectly.
Trhe execution closure of a given unit is the compilation closure plus afl associated secondary

units (library bodies and subunits).

2-16 Implementation-Deoendent Characteristics

Certain tests it. >C:'". ., .- t- l implementation-dependent values,

such as the lin:: '::...............e and invalid file names. A

test that makes '.:s at su::. .':uus is identified bv the extension .TST

in its file namut. Actual values to be substituted are represented by

names that begin with a dollar sign. A value must be substituted for

each of these names before the test is run. The values used for this

validation are given below.

$ACC_SI ZE 32

An integer literal whose value

is the numbcr of bits sufficient

to hold an-: value of an access

type.

$BIG IDI l..254 -> 'A', 255 -> 'i'

maximum .. .e. n f e- w

varying last c,aractcr.

$BIG ID2 1_254 => 'A', 255-> '2'

Identifier the size of the
maximum ".p ut lin ±e. with

varyig.u last ciaracter.

$BIGID3 1_127 => 'A', 128 -> '3',

identifier "-e size of the 129.. 255 => 'A'

iaeu ie kenth with

TBIG 1.127 => 'A', 128 => '4',

$BIC INT-.T

An integer literai of value 298 1..252 -> '0', 253..255 -> '298'

with enouii leading zeroes so

that i ZIS the size of the
maximum !irn+ len,-th.

$BIG REAL LIT 1.250 -> '0', 251..255 ->

A universal real literal of '690.0'
value 690.0 with enough leading

zeroes to -e the size of the

C-1

maximum 'Line len!;th.

$BIG STRIN.'Gi 1..195 -> "A"

A string literal which when
catenated w't BGI STRNG

vields the 1!> e or f T BlIDIA.

$BIG STRIN;C2' 196. .254 11 127, 255 - 1

A 4t:4 . C~ .. z~cc
catenate&-- te ed o
BIG STv5 ields the iiwage of

$ BLA NS 1. .235 -
A sequence : o a n ks twenty

charact-ers lcss t-han the s i ze
of the inax -'I! : line1T l-0 IC 1.t

$COUNTL\%ST 2_147_483_647

literal Ino Is
TEXT: 0O. C C::T' !-*-S T.

$DEFAI'L- "E" 7 2~3-

An int--e;er 11i' t.r .l %..hose val1ue
is SYS:EMMZ:OR S :ZE.

$DEFAULTSTORj:NT7 8
An integer literal whose value
is SYSTEM.ST*DRAGE UNIT.

$DEFAULT SYS NA 3-:-; VAX VMS

The -va!lue of he constant
SYSTEM*' S',ST7E....

$DELTA DDC2.,:(-l

$FcT 7 1,: I8 64

A unt, - int-eger
literal OaSe value i s
TEXT- 1I T 'D T :

$ FIXED -NAX:E NO SUCH FIXEDTYPE
The name Of a predefined
fixed-point tve oth ie r than
DURAT IO'.

$ F LOA T N', - LONG LONG FLOAT
The namne of a predefined
floating-point1 tyIpe other than

F:A -T 5:_:, t~ :,,or

. 75 0 00 .0

----- - . BASE !.ST 131 073.0
e eal literal thaz is

greatder :a:: DU.TON' BASE' LAST.

An eer r whose value

:s te Jper '0.ur o1fte range

$ LCLE'TR:A L_;."Ei BADCHAR^@.- !
rt: :. e -u . : -:."

t
pT Q: wh h

< :::,: :: ina"iScharacters.

SL FLE N AM E 2

-i -. .-IF-IT-WERE-N0T-SO-LONG.SO THERE

-2147483648

i, S e : eger literal

2147483647

" - ":e - R . :.a

2 147 483 648

-75 000.0

Ssa rea teai a eat

i£ : %,el'we:..;.or:.~. -,b
a.-i L'-:T '::' IR T or ap ~ val 1e

.nh range of DURATION.

SLESS TE::_AT:O:: BS~E F:RST -131_073.0

A '.- " > lieral that is

ess :.ar- :-.uA'EASE'FIRST.

$LOW ?F, ... R:. 0'

An ir.eger literal whose value

is the lower bound of the range

C-3

for the subty e SYSTEM.FRIORITY.

$MANTISSADOC 31
An integer literal whose value

is -E-. .-. JS .

$MAXDIGITS 33
Maximum 7i:i -s sptrported for
flo a ir - i:t ty 1,pes.

$MAX IN LEN 255

Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.>U.AXINT.

$MAXINTPLUS_! 2_147_483_648

A universal integer litezal
whose value is SYSTE>1.:: I:;T+l.

$MAX LEN NT BASED LITEP.L 1..2 => "2:", 3..250 -> '0',
A u:.vs integer rbased 251..255 => '11:'
literal .f-. vaue is -'=1=
with enouan leac..ing zeroes in
the mantissa to be .IX IN LEN
long.

$ -_AXLEN RL.PS -LITEPL 1.2 => '16:', 3..248 -> '0
A universal real based literal 249..255 => '16:F.E'
whose value is 16:F.E: with

enoush leadinz zeroes in the
mantissa to Le :-' E .long.

$MAX STRI'.UTEPAL 13-L> ..".1,2..254 => "A",

' . LEN. i:.' i n: -- .. o .

characters.

$MIN_,T --2147483648
A universa" i.te :er tera.
whose value is S'.STE[S . ::c .

$MINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and

"NULL;" as the only statement in

its body.

C-4

$,NAME SHORTSHORTINTEGER
A name of a Fredefined n-wreric
type other than FLOAT, INTEGER,
SHORT-FC:2 SHORT -iNTEGER,
LONGFLOAT, or1 L ONGC I' :T EGCER .

$NA.MELIST. %VAYVMS, VAXELN
A liSt Of......~)f ;-eita Is

in thle :e SY1STEM-.
separated b,. commas.

$NEGBASED -IT 16gFFFFFFFE#
A based i nteger literal %.hose
highest order nonzero bit
falls in he s ign bit
position of t.he representation
for SYSTEM.'1ILK IN:'T.

$NEWMEMSIZE 1_048_576
An integer litzeral whose value
is a permittzed argument for
pragma memor: -s~ze, other than

$DEAUL :3: SZE. If thiere is
no ot~her: h'le ten use
$ D EFAULTS:4EZ SIZE

$NEWSTOR UNIT 8
An integer literal whose value
is a permitt:ed argume-nt for
pragma storate-unit, other than
$DEFAULT_-STO U'NIT. If there is
no other permitted value, then
use value of S'.YSE4-.-.SORAG;E UNIT.

$NEW-SYS -* vAY EL-N
A value of -:--7e SySTEM "!', '
other t-han- 2"..
there Is c,.:'-.' 01 o

$TASKS:L-7 32
An integer Itea whose value
is the number of bits required
to hold a task object whli-ch has
a single entr-y w-ith one inout
parameter.

$TICK~ 10. O**(-2)
A real liter:l whose value is
SYSTEM.TbCK.

C-5

APPENDIX D

',.hITHDM ..N TESTS

Some tests .. .: :o. the ACVC because they do not conform to
the Ada Stti'iffi -ests had been withdrawn at the time

ovf ti-. . f ' L, Zeasons indicated. A reference of the
form Ao -dddk i. "o an A&a _ o-i:aentarv.

A39005G
This test unreasonably expects a component clause to pack an array

component into a minimum size (line 30).

B97102E

This test cont:.ins an unintended illegality: a select statement

contains a null statement at the place of a selective wait alternative

(line 31).

BC3009B

This test ,rn " exp%.cts tviat circular instantiations will be detected

in several co:.nciation units even though none of the units is illegal
with respect to te units it depends on; by AI-00256, the illegality

need not be ct,:teci ,_ntil eKecution is attempted (line 95).

CD2A62D

This test requires that an array object's size be no greater
than 10 altho .. its subtype's size was specified to be 40 (line 137).

CD2A63A. .D, CD2A663A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests "o n- atempt to chec,: the size of objects of a derived

type (for which a 'S ZE lenth clause is given) by passing them to a
derived s"r a ich implicitly converts them to the parent type

(Ada sta.Addcitionally, they use the 'SIZE length clause

and att- interpretation is considered problematic by the WG9

._RG.

CD2ASIC.7IS. LA- ,X & CDSlIO

These t esst e-enen tasks will terminate while the main

program O, that si mply tests for task termination; this is
not the zase, t:e main program may loop indefinitely (lines 74, 85,

66 & 6, C*6 c& '". .-.d 58, resp.).

CD2B1SC & CD7205C

These tests expect that a 'STORAGESIZE length clause provides precise

control over the number of designated objects in a collection; the Ada
standard 13.2:.5 allo..'s that such control must not be expected.

CD2DllB

This test gives a S: LK.LL representation clause for a derived fixed-point

type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all

D-1

model numbers o a derived fi::ed-point type must be representable values
of the paren type.

CD5007B
This test wrongv e.-:ec:s a. i::tiv declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005" c £D > & -, '5 tests]
These tests chlec various aspects of the use of the three SYSTEM
pragmas; the AY, t:hraws tnese tests as being inappropriate for
validation.

CD7105A
This test requires :;-at successive calls to CALENDAR.CLOCK change by at
least SYSTEM. TICK, however, ny Commentary AI-00201, it is only the
expected frequeic: of chance that must be at least SYSTEM.TICK --
particular instances of clanze may be less (line 29).

CD7203B & CDT2O ' 5

These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test check:s a:: invalid test objective: it treats the specification
of storage tC be i:served far a task 's activation as though it were like
the specification of storar-e for a collection.

CE21071
This test requires that objects of two similar scalar types be
distinguished r.:hen read fran a file--DATA ERROR is expected to be raised
by an attemnpt to read one object as of the other type. However, it is
not clear e:.actlv how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test obiective is not considered valid. (line 90)

CE31!!C
This test recuires c:r:in be..avior, when two files are associated with
the same e:::e'-na' , .s no: required by the Ada standard.

CE330!A

Thit. r ., 0 ... & END OF PAGE that have
no parameter: z:_ ,:e intened to specify a file, not to refer
to STANDARD I-PUT 'lines 1n, .07, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'ILAST
in order to check that L.A'.OUT_ER ROR is raised by a subsequent PUT
operation. But f:.e former operation will generally raise an exception
due to a lacci of .aole disk space, and the test would thus encumber
validation test..:.

E28005C
This test e:.pects that the strir.3 "-- TOP OF PAGE. -- 63" of line 204

D-2

will appear at the zop of the listing page dup to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-3

.APPENDIX E

-OMPILER OPTIONS AS SUPPLIED BY

, izi ta quip:nent Corporation

Compiler: -'' z Version 2.0

ACVC '.'ersion: 11o

/A.NALYSIS D.TA or /NO^,A LYS S_DATA

Controls whether a data analysis file containing source code cross-
referencing and static analysis information is created. The
default is /N .NALYSIS DATA.

/CHECK or i:.O.AECi"

Controls .net:.er run-time error checking is suppressed. (Use of
.. o ving all possible suppress pragmas in

the source pro,:ram. The default is /CHECK (error checking is not
suppressed .::ept by pracma).

/COP? _S R r" ,0,0P 50URC..E

Controls :ezner the source being compiled is copied into the
compilation library for a successful compilation. The default is
/COPY_SOVR-FCF.

/DEBVG or " c,--" or DUg=option

,- .:..-.CK or NOTRACEBACK, or NONE

............, .i:_:r:. ::o- ng symbol table information in the
oor.ns-ed ~o:: ::'o e. " e default is /DEBUG or, equivalently,

E-1

* /DICOIsDIA IAGNO ::-TilCSme or /NODIACNOSTICS

Controls w'hether a specia. diai~nostics file is produced for use
hi z ht e a. an a Se n S i 1ie Editor (a separate DIGITAL

produc::1 !he dfltis '.O-DI:ACNSTICS.

Controls --h-e number of errur level diagnostics that are allow d
within a single compilation unit before the compilation is aborted.
The default is I'ERRORLIMIT=30.

* /LIBRARY=directorv-name

Specifies th-e name of the A'da compilation libra-y to be used as the
context for the compilation. The default is the library last
established bv the ACS SET LIBRARY command.

* /TLIST, LlTflnm.or OLS

Controls-- he a listi-n _ f ile is produced. /LIST without a
filename u-ses a ciefauitt fieaeof the form sourcename.LIS, where
sourcena:'.e - .'e source file being compiled. The
default is ALS (for bohitrc~eand batch mode).

* />LACHINE CODE or /NO>Lk.CHNE CODE

Controls whether generated machine code (approximating assembler
nota t ion) is included in the listing file, if produced. The
default is,'OAHECD.

* NOTE SOUR!CE- or SNONOE *SRCE

Controls he te ile specification of th,-e current source file
the cor-la in arv. (This copy is used for

C ;rZ- "-.E S) The default,- is

C o ntro a I optim7ization is applied in
producing t n:1e compiled code. The default is /OPTIMIZE.
(/NOQPTIMUZE is primarily o-f use in combination with /DEBUG.)

* /HO~=PRTBILTYor :C)S H0';,

Contiols thraport-ab),'iit summary is included in the listing.
Thedeal Sji:pi:Bz.

E-2

cateory desti:--at 'on

Specifies which categories of informational and warning level

messages are u5sDa'ed fr wl.ich destinations. The categories can

be WAPXP'CS "EAKUARNGS, SUPPLEMENTAL, COMPILATIONNOTES AND

STATUS. Ti;& cies:Lr'tiions can be ALL, NONE or combinations of

TEx::.:L. L:STI: r D:1AGCOST,2S. The default is

..$ARNIS=, .N : ALL,EAK.ALL, SUPP:ALL,COMP:NONE,STAT:LIST)

E-3

